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1 FIRST TREATISE ON ELLIPTIC FUNCTIONS

1.1 A. ON THE TRANSFORMATION OF THE FUNCTIONS E(u), IT(u,a),
WHICH EXTEND TO THE SECOND AND THIRD KIND OF ELLIPTIC
INTEGRALS. ON THE TRANSFORMATION OF THE FUNCTION Q(u).

1.

Using the same notation I introduced in the Fundamenta nova, let n be an
arbitrary odd number, let m, m’ be arbitrary numbers, but both not divisible
by the same factor of n at the same time: In the Fundamenta nova I proved a
theorem, fundamental in the transformation theory of elliptic functions, that,
having put w = KiK.

7

A = k" {sin coam 2w sin coam 4cw - - - sin coam 2(n — 1)w}*,

n—1

M= (-1)z {

sin coam 2w sin coam 4w - - - sincoam 2(n — 1)w
sinam 2w sinam4w - - - sinam(n — 1)w

and additionally
x = sinamu, Yy = sinam (%,A)
it will be
2 4 2
y= i (1 - sinzszw) (1 - sin22m2w> o (1 o sinzanf(n—l)w>

M (1 —k?sin®>am2w - x2)(1 — k2sin am 4w - x2) - - - (1 — kZsinam(n — 1)w - x2)

Further, from this formula we derived (Fund. § 23) an identical equation,
which holds for arbitrary x:

(1) x](x*—sin*am2pw) — ﬁ sin (%,0 I1 <x2 B 1)

k2 sin® am 2pw
= [x — sinam u][x — sin(u + 4w)] - - - [x — sinam(4(n — 1)w)],

if in the products, denoted by the prefixed sign [], all values 1,2, 3, - - -, ”T_l
are attributed to the number p.

Having compared the coefficients of the powers of the variable x on both
sides of the equation to each other, formula (1.) gives us the sums of the
combinations of the expressions



sinamu, sinam(u +4w), sinam(u+8w),---, sinam(u+4(n—1)w).

For the sake of an example, the sum of these expressions is
A .
= —sin (M' )\) ;
the sum of the products of two of them
= —[sin? 2w + sin*4w + - - - + sin’am(n — 1)w],

which constant quantity we will denoted by —p. Hence one can also deduce
the sum of the squares

AZ

sin® am u +sin® am(u +4w) + - - - +sin’*(u +4(n — w) = M2

sin® am (%, A) +2p,
or

AZ
(2) M2 sin” am (%,)\) = X:sin2 amu — 2p,

if by ¥ ¢(u) we denote the expression

Y o(p) = o(u) + ¢(u +4w) + o(u+8w) + - - + @(u+4(n — Nw).
From (2.) it also follows:

)\2

(3. MR cos? am (i, A) = Y cos?amu — 20
1 u
(4.) —ham (M,A) — YAamu — 21,
if
/\2
1
(6.) o 2k%p + 2.



Since the expression cosam (44, ), having put u = K, from (3.) we will

obtain:

2 2

(7.) o = cos? coam 2w + cos* coam 4w + - - - 4 cos® coam(n — 1)w.
Since the expression A am (%, /\), having put u = K+ iK’, and additionally:
Aam(u + K+ iK') = Acoam(u + iK') = ik’ tanam u

(see Fund. § 19), from (4.) we will obtain:

(8.) 1T =KK[tan’am2w + tan’ am 4w + - - - + tan® am(n — 1)w].

2.

Formulas (2.), (3.), (4.) can also be represented this way:

)\2

9.) N sin® am (%,A) = sin® am u + X[sin? am(u + 2pw) + sin® am(u — 2pw)] — 2p,
(10.) kz/\]\z/IZ cos? am <%, /\) = cos?am u + X[cos? am(u + 2pw) + cos? am(u — 2pw)] — 20,
(11.) %Az am (%,/\) = A?amu + Z[A?am(u + 2pw) + A?am(u — 2pw)] + 21,

if always the values 1,2, 3, - - -, ”7*1 are attributed to the number p.

Now put:
u
/A2 amudu = E(u),
0

which deviates slightly from the notation used by Legendre, which we also
used partly in the Fundamenta nova. For, having put ¢ = amu, he denoted the
elliptic integrals of the second kind by:

¢ u
E(¢) = E(amu) = /Aq)dgo: /Azamudu
0 0



so that what is E(u) for us, is E(am u) for him. Further, by the letter E, without
an argument, we always denote the function:

E=E(K) = /A(pd(p,

which he denotes by E!, and in the same way by E’ the function:

E' = E(K,K) / (¢, K)d
0
Having constituted this, we have:

/[A2 am(u + 2pw) + A% am(u — 2pw)]du = E(u + 2pw) + E(u — 2pw).
0

One will not have to add a constant, since both sides of the equation vanish
for u = 0. Hence from (11.), having integrated from the limit u = 0 to u = u:

1
(12.) ME (M ) + Y [E(u+2pw) + E(u — 2pw)] 4 27u.
Formula (12.) can be transformed by means of the known theorem on the
addition of elliptic integrals of the second kind:

2k? sin? am a sin am 1 cos am uAamu

1 — k2sin?asin®am u

E(u+a)—E(u—a)=2E(u) —

which, after a differentiation, is easily demonstrated from the elements (see.
Fund. § 49). By means of this (12.) goes over into this one:

sin? am 2pw

(13.) nE(u)— iE (%,)\) +27u = 2k? sinam 1 cosam uA am u Y

M 2

1 —k2sin? am 2pw sin?amu’
Formulas (12.), (13.) concern the transformation of elliptic integrals of the

second kind. We will exhibit them in a more convenient form soon.

Let us put:



/O " E(u)du = log Q(u),

since

2

2k* sinam u cosam uA am u sin® am2pw _ dlog(1 — k* sin* am 2pw sin” am u)

. . 7
1 — k2 sin® 2pw sin® am u du

from (13.), again after the integration from u = 0 to u = u, we obtain:

nlog Q(u) —log Q) (%,A) +tuu = — ) _log(1— k* sin? am 2pw sin® am u),
or:
Q(+, A
(14.) e . Q(’iv(lu)) =T (1 — ¥ sin’am 2pw sin® am u),

if, as above, by [T ¢(p) one denotes the product

TTo() = oWo@e(3) -0 (5 ).

Having put sinam u = x (14.) is represented this way:

04

(15) ™ o

= (1—k?sin? am 2w - xx)(1 — k? sin? am 4w - xx) - - - (1 —k? sin? am(n — 1)w - xx).

This expression constitutes the denominator of the rational substitution that
was used for the transformation of the elliptic functions (see above),

L(1_¢) (1_ xx )(1_$)
M sin? am 2w sin? am 4w sin?am(n—1)w

u
sinam ( —,A ) = ;
<M ) (1 —k2sin?am 2w - xx)(1 — k2sinam 4w - xx) - - - (1 — k2 sin? am(n — 1)w - xx)

therefore, it is possible to express this denominator by means of the new
transcendent ()(u) separately. This is a most important theorem and of
highest use in the whole theory of elliptic functions.

Let that substitution, if x = sinamu, be

X 1H A4 A g AT

sinam ( —, = — n— ’
M M 1+B’x2—|—B”x4+---+B( 21)x”*1




having put

2

n— sin“ am u
1+ A2+ A AT )1 = (1 _ >
H sin? am2pw

_ (1 sin?am u 1 sin? am u 1 sin?am u
sin am 2w sin? am 4w sinfam(n — 1w/’
n—1

14 B'x2+ B"x* + ...+ BT )yl = [ J(1 — K¥* sin® am 2pw sin® am )

2 2 2

2 2 amu)--- (1—k?sin?am(n — 1)w sin

= (1 —k*sin? am 2w sin? am u) (1 — k? sin? am 4w sin amu),

it will be:

—Tuu (ﬁ’)\) ! i 2 1" o34 (ﬂ) s an—1
(16.) e T(Lt):1+B sin“amu+B"sin"amu+---+ B\ 2 /sin"" " amu.
Hence after a logarithmic differentiation it follows

(17.) nE(u) — %E (%,/\) +27tu

_ cosam uAu[2B'sinam u + 4B" sin®amu + -+ + (n — 1)B(%) sin 2 am u]

n—
2

1+ B'sin?amu + B”sin*amu + - - - + B("7') sin" 'amu

This most elegant formula tells us, how from the denominator of the expres-
sion found for the transformed function sinam (4;,A) one always finds a
transformation of an elliptic integral of the second kind.

You will find the value of the constant T by putting u infinitely small, having

done which we have E(#) = u, sinamu = u, cosamu = Aamu = 1, whence

1 '
n—m+2T——2B,

what, since B’ = —k?p, agrees with formula (6.).
Additionally, let us note, if you start from formula (12.), that after the integra-
tion you obtain:

Q(u+2w0)Q(u+4w) - Q(u+ (n —1w)
QQ2w)Q(4w) --- Q((n —1)w)

Q(u —2w0)Q(u —4w) - - Q(u— (n —1Nw)

QQ2w)N(4w) - Q((n— 1w

Q(u)

18) O <%/\> _




3.

For the sake of brevity, if x = sinam u, let us put

- X
M

V = <1+B1x2_’_B/1x4‘”_'_B(%)xn—l).

u (1+A’x2+A”x4---+A("T_1)x"_1>

so that:

. u u
sinam (M'A> =7
(17.) becomes:

1 u av
E(u) — —E (— 27U = —
nE(m) = (M’)‘) AL 7777
whence, after a differentiation,
1 u dvdV — Vd*V
2 2 _
nA amu — WA am (M,)\) +2T = W,
which formula, recalling (6.):
1 2
W =n-— 2k p + 2T,
goes over into this one:
A2 s dvdav — vdrv
2.2 20
(19.) — nk” sin amu+m <M'A) +2k“p = —vaE
or, after a multiplication by V'V, into this one:
2 2
k*(20 — nsin®sinamu)VV + %uu = ‘ZZZZZ - Zu‘;.

Further, we saw in the Fundamenta nova § 21, having put u + iK' instead of u

or m instead of sinam u, that
. A u ) u ) 1
V' goes over into — sinam <—, /\) into -
k" sin” amu M Asinam (4%, A)

4



whence the expression:

dvdv — Vd?v _d2 logV

VVdu? - du?

goes over into:

2 ; 2
nd logfzzznamu o d CIZ(;%U - {kzsinzamu _

sin am u

1 _ d*logU
du?

and hence (19.) into:

1 dudu — ud*u
—nk?sin® am u + 2=
M2 sin® am (45, 2) P Uldu?
whence, after a multiplication by UU:
1 dudu . d*U
200 1 cin? S yy =22 eH
k“(2p —nsin“amu)VV + szv 70 du R
To the formulas we found:
(20.)  K*(20 —msin?amu)VV — ﬁuu _ v v
’ P M2 ~ du du du?’
1 du du d*U
2090 _ 1 ain _ b _adall L amud
(21.) k*(2p — nsin®amu)UU MZVV T du ™

one has to add this one:

(2) v v _ 1
du du M
which results from the differentiation of the equation sinam ($,A) = % ; by
means of it it is possible to eliminate one of the quantities U, V from (20.),
(21.); having done so, one will get to a differential equation of third order.
This is indeed a memorable and very deep theorem, THAT THE NUMERATOR
AND THE DENOMINATOR OF THE SUBSTITUTION, U, V, CAN BOTH BE DEFINED BY
AN DIFFERENTIAL EQUATION OF THIRD ORDER.
For the sake of brevity I will not state these differential equations of third order
here; in all cases it seems to be more convenient, to use the equations (20.) —
(22.) in combination instead of the third order equations. I will demonstrate
their extraordinary use for the algebraic formation of the functions U, V, or

VWV —uuy(vy - a2uu),



the substitution, which leads to the transformation, on another occasion. Here,
let us only note the following proof for the formulas (20.), (21.).
For, having divided (20.) by V'V, (21.) by UU, it results:

A2 d?logV
) .2 _ g
k*(20 — nsin®amu) + L Sin°am (15/A) = — T
1 d*log U
k2(20 — nsin>amu) + = - ,
(20 ) M2 sin? am (45, A) du?
whence, after a subtraction,
L{/\Zsinzam (1 /\)} B 1 _ d?logsinam (4, A)
M? M’ sin” am (45 A) B du? !
which results immediately from the formula:
2 log si 1
4" logsinam u ogsn;amu = K*sin*amuy — —5—— 5 ,
du sin“ am u

having put ;; instead of u and A instead of k.
The complete integral of the differential equations of third order, by which
the functions U, V, are defined, do not seem to be accessible.

4.

Having integrated the formula mentioned above in § 2:

2k? sin? am a sin am u# cos am uA am u

2

(23.) E(u+a)+E(u—a)=2E(u)— —
1 — k2 sin“asin“amu

from u = 0 to u = u, we obtain:

Q(u +a) +log —a) = 2log O (u) + log(1 — k? sin? am a sin® am u),

log =) Q(a)

whence a formula, fundamental in the analysis of the function (), results:

Q(u+a)Q(u —a)
0O2(a)O2(u)

=1 —Kk%sin2amasin?amu.

(24.)

10



From formula (23.), having commuted a and u, we find:

2k2 sin am a cos am aA am sin am u

2 7

25) E — Elu—a)=2E(a) =
(25.) (u+a) — E(u —a) (a) 1— k2sin?am usin? u

having integrated which from u = 0, we obtain:

Q(u+a) i sin® am udu

k2 sin® am a sin? am u

log Ou—a) 2uE(a) = —2k*sinama cosamaAama 0/ -
In the Fundamenta nova I used the character I1(u,a) to denote the integral,
which according to Legendre’s classification is an elliptic of the third kind:

u 2

. sin“ am udu
I(u,a) =k smamacosamaAa/ n
0

2

. . 7
k2 sin® am a sin? am u

using which notation we have:

B 1, Q(u—a)
(26.) I1(u,a) = uE(a) + 5 log Ota)
This is the fundamental formula for the reduction of elliptic integrals of the
third kind to the functions E(u), Q(u). Confer Fund. §§ 49 and the following.
By means of formula (26.) from the formulas found for the transformation of
the functions E(u), Q(u) we immediately obtain those for the elliptic integrals
of the third kind or of the function I1. For, from (26.), having put 57, 17, A
instead of u, a, k:
u a u_/a 1, Q%450
7)1 (5 30) = 34E (3pt) 2 108 Q (5 2)

from which formula we want to subtract the following:

nIl(u,a) = nE(a) + glog SEZ‘T‘Z;’

it results:

(28.) I1 (%, ﬁ,)\) —nll(u,a)

11



1 _/a 1. QAN 1. Q%452

= —E(— — ,1 M7 gg M7

M{ME(M’/\> ”E(”)} %8 r(u—a) 2 B (uta)
which formula, using (16.), (17.) goes over in the following:

(29.) II (%ﬁ/\) — nll(u,q)

B {CosamaAama[ZB/smama+4B”sm3ama+ = ( 1)3(71) sin” zama]}u

1+ B'sinama + B” sin*ama + B("z") sin" ama
+1 log 1+ B'sinam(u — a) + B” sin*am(u —a) + B("7") sin” “lam(u —a)
2 714 B'sin? am(u + a) + B”sin*am(u +a) + B("7") sin” “lam(u + a),

which fundamental formula teaches, how from the denominator of the sub-
stitution one immediately finds the transformation of elliptic integrals of the
third kind.

The same can be exhibited in another way by the formulas (12.), (18.), by
means of which

H(u 4 A) —iE (i,/\> + 2Tau

M M’ M~ \M

B Q(u —a) 1 Q(u +2pw — a)
_zlogﬂ( + )+Z 10gQ(u+2 w+a)+1lo O =2pw —a)
P 2 gQ(u—pr+a)

Q(u — 2
logQ —I—Z flog (u—at2pw) /

Qu Q(u+a—2pw) + Lo Qu —a = 2pw)
F 2 gQ(u+a—|—2pw)

whence we deduce the following two formulas:
u a 1 a
(30.) II (M’ M,A) +u {nE(u) L (M,A) +2m}
=1II(u,a) + IT(u + 2w, a) + I(u +4w,a) + --- + IM(u+ (n — 1)w,a)

+ (4 — 2w,a) + Il(u —4w,a) + -+ + II(u— (n—1)w,a)

12



(3L)  II(4 .A) =1(w,a) + 1(u+2w,a) + H(u +4w,a) + - +I(u+ (n —1)w,a)

+ I(u — 2w, a) + 1l(u — 4w, a) + -+ +1l(u— (n—1)w,a);

these are the new fundamental formulas. In the Fund. § 55 (7.) we gave the
formula:

IT(u,a+b)+11(u,a—0b)—211(u,a)

> . sin am b 1 1 — k?sin? am bsin? am(u — a)
= —2k“sinamacosamaAama — — ‘u+ - log — —
— k% sin®am bsin“ama 2 1—k?sin“ambsin”(u + a)

by means of which from (31.):
u a
(32) II (M,M,A> — nll(u,q)

2am(u —a)

sin? am2pw _— Z log 1 — k2 sin? am 2pw sin

= —2k? sin am a cos am aA amaz >

— k2 sin? am 2pw sin? am a 1—K2sin?2pwsin?am(u +a)
if you attribute the values 1,2, 3, - - -, Tl to the number p. This formula also

follows easily from (29.).

1.2 B. ON THE SIMPLY PERIODIC FUNCTIONS x(u) = e™"Q)(u) AND
THEIR SINGULAR PROPERTIES.

5.

Let us examine our function Q)(u#) more accurately, and let us give its reduction
for an imaginary argument of the form iu to a real argument first.
Having put sin ¢ = itan :

de iy
Ap Al K')
Ny, K)d
Apdg = E:lf)szt; !

whence, after an integration:

Kk sin®
/Agodq)_z tan A (¢, k') —|—/ AY, K

13



This formula, having put:

¢ = am(iu, k'), whence ¢ =am(u, k'),

is represented this way in our notation:

(1.)  E(iu) = i[tanam(u, k') Aam(u, k') + u — E(u, k)],

whence, after an integration:

log Q(iu) = logcosam(u, k') — % +log Q(u.k),

or:

(2)  Q(iu) = e~ 2 cosam(u, k' )Q(u, k).
Confer Fund. § 56 (1.), (2.).

6.

Having mentioned these things in advance, let us now ask, which changes the
function Q)(u) undergoes, while the elliptical functions remain unchanged,
i.e., while the argument u is changed into u + 4mK + 4M'iK’ for positive or
negative numbers m, m'.

From the elements we know the formula:

(3. E(u+2mK) = E(u) + 2mE,

if by the simple letter E without the argument we denote the complete function
E(K) that Legendre denoted by E'; having added a slash, by the character E’
we will denote the complete function which extends to the complement of
the modulus or the function E' = E(K’, k"), as we indicated at the beginning.
After an integration of (3.), we obtain:

Q(u +2mK)
logm =2mE - u +10g0(1/l),
or:
Q(u+2mK) _ 2mE-u
&) aEmky ¢ QW)

14



Having put u = —2mK in this formula, since Q(—u) = Q(u), Q(0) =1, it
results:
Q(2mK) = "X,

by means of which (4.) goes over into:

(5)  Qu+2mK) = 2mEWEmKI 0 (),
or into:

E Euu

(6) e kWK’ 4 2mK) = e K Q(u),
which formula teaches THAT THE FUNCTION

_ Euu
e X O(u),
HAVING CHANGED U INTO U + 2mK, REMAINS UNCHANGED AND HENCE HAS A
REAL PERIOD WITH THE ELLIPTIC FUNCTIONS OF THE ARGUMENT # IN COMMON.
Put u +2M'K’ instead u in formula (2.), we find:

’ (u+2m/K/)2

Q(iu+2m'iK') = (=1)"e" " 2z cosam(u, k" )Q(u +2m'K’, k'),

whence, since from (6.):

E _ Euu

e—m(wzmq«)zﬂ(u —|—2m/K/,k’) — W Q(u,k’),

we obtain:

_E 12 . . ’_ (u+2m/K/)2 _ Eluu
e~ 2K Gy 4 omiK') = (—1)™ e 7 cosam(u, K )e” = Q(u, k'),
or:

K'—F'

eW(”"‘zle,)zQ(iu +om'iK') = (—1)"

! Eluu

e~ cos(u, k") Q(u, k)

, (K —E)uu

(=1)™e 2 Qiu),

whence, having put —iu instead u, or u instead of iu:

K'—E / K

(7) PTG (u+2m/iK’)ZQ(u+2m/iK/) _ (_1);11 e ZEF MllQ(u),

15



which formula tells us THAT THE EXPRESSION

(K'=ENuu
e 2 Q(u),
HAVING CHANGED U INTO u# + 4m'iK’, REMAINS UNCHANGED, OR HAS ANOTHER
IMAGINARY PERIOD WITH THE ELLIPTIC FUNCTIONS OF THE ARGUMENT 1 IN
COMMON.
It should be noted that from the known formula, found by Legendre,

KE' + K'E — KK = g

or:

it follows:

K-F n E
2K’ 4KK' 2K’

whence formula (7.) can also represented this way:

8)  elamio—2) 2K 0y 4 opliky = (—1)™ elaio—26) Q(u).

Having changed u to u + 2mK in this formula, from (6.) it results:

e(FHK,—%)(uﬁ—ZmK-i-Zm’iK/)ZQ(u+2mK+2m/iK/) _ (—1)”1/3?7}/(“4—27”1()267%0(11).

But:
& [( + 2mK + 2m'iK')2 — (1 + 2mK)?]
_ ”i;(” [ + 4mK + 4m'iK'] + mm'irc
- 41<(m1T ,—iknm’iK’) (4 +2mK + 2m"iK)? — uu] + mm'irr.

Hence, after we note that ¢ = (—l)’”m, and, for the sake of brevity, put:

m'ir _E
4K(mK + m'iK') ~ 2K’

16



we obtain the formula:

(9.) er(u+2mK+2m’iK/)20(u +2mK—|—2m/iK’) _ (_1)m’(m+1)eruu0(u)/

which formula teaches THAT THE

e(m)uuﬂ(u) — €muﬂ(u>,

HAVING CHANGED U INTO # + 4mK + 4m’iK’, REMAINS UNCHANGED, WHENCE
IT ALSO HAS A PERIOD WITH THE ELLIPTIC FUNCTIONS OF THE ARGUMENT U IN
COMMON.

It is convenient to note that the value of r is not changed, if one puts pm, pm’
instead of m, m’.

Formula (9.) can also be represented this way:

(10.) Q(u +2mK+2m’iK’) — (_1)m’(m+1)e—4r(ml<+m’i1</)(u+mK+m/iK’)Q(u)

2K (mK+m'iK’)
Je— 1 (

— (_1)m’(m+1 u+mK+m’iK’)Q(u)

4

which general formula teaches, which changes the function Q(u) undergoes,
while the elliptic functions remain unchanged. Having put u = 0, we obtain
from (10.):

/ 2E 1t K

(11.) Q(me + 2m/ZK/) — (_1)711 eT(mK+m/iK/)2+m m 77.’7.
After a logarithmic differentiation we obtain from (10.):
2E(mK 4 m'iK") '

(12.) E(u+2mK+2m'iK') = E(u) + < _ min

= E(u) +2ME +2m'i(K' — E'),

whence, having put u = 0,

(13.)  E(2mK +2m'iK') = 2mE + 2m'i(K' — E').

17



In the following, let us put:

x(u) = e 0(u),

from (9.), having put 2m, 2m’ instead m, m’, it will be:

xX(u+4mK + 4m'iK') = x(u)

so that x(u) is a periodic function. Therefore, for innumerable values r can
take on, while you attribute the one or the other to the numbers m, m’, we
obtained innumerable periodic functions x(u), which have one single period
with the elliptic functions in common. And vice versa, whatever period from
the innumerable ones the elliptic functions have you want to choose, the
quantity r can always be determined in such a way that the function:

x(u) = e™0(u)

enjoys the same period. From those various periodic functions x (1) we chose
that one in the Fundamenta nova which has a real period with the elliptic
functions in common, for which m’ = 0 and hence r = —%. There we

denoted that function by the particular character ® so that:

Ou) _ e KO (u),

and everything what was propounded on the function © there, is either
directly or very easily extended to the more general function x(u).
From the formulas exhibited above:

Q(u+a)Q(u —a)
() (u)

=1 —k?sin?amasinamu,

u_ dQ(a)

+1100u—
Q(a) da 2%

IT(u,a) = Qta)

it also follows, having put:

whatever constant r is:

18



2

(14.) x(uta)x(u—a) =1—k?sinamasin®?amu,

X (@)x? (u)

Let us, as above, put:

mK + m'iK' = nw,

while n denotes an odd number, m, m’ arbitrary positive or negative numbers
of such a kind that the numbers m, m’, n are not divisible by the same number;
from the preceding;:

x(u+4nw) = x(u).
Now let us form the product
x(u)x(u+4w)x(u+8w)---x(u+4(n—1lw) w(u)
X (4w)x?(Bw) - - x*(2(n — 1w) '
it is plain, having put u + 4w instead of u, that each factor goes over into the

following, but the last into the first; hence, since the product of all of them is
not changed:

P +4w) = p(w),

and hence even, while p denotes an arbitrary positive or negative number:

P+ 4pw) = p(u).

Now, since in general:

x(u+4(n - plw) = x(u - 4pw),
from (14.):
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x(u+4w)x(u+4(n—1)w)

Caw) = (1 — k2 sin? am 4w sin® am u) x%(u),
x(u+ SW)))ggzlg‘;?(” —2)w) _ (1 — k? sin? am 8w sin® am u) x%(u),

whence the product ¢(u) can also be exhibited this way:

n—1
2

(16.)  w(u) = x"(u)[1+B'sin>amu + B" sin*amu + - - - + B("7") sin"'amu],

if, as above, one puts the denominator of the substitution:

(1 —k?*sin?am4wsin?amu) - - - (1 — k? sin?am 2(n — 1)w sin® am )

=1+ B'sinamu + B"sin*famu + - - - + B(%) sin” lamu.

Now, since (1 +4pw) = ¢(u), from (16.) the following fundamental formula
of highest importance follows

4
(17) ~ Xtdpw)
x(u)
o 14 B'sin2amu + B” sin*famu + - - - + B("2) sin" ' am u
1+ B’sin? am(u + 4pw) + B” sin am(u +4pw) + - - - + g("z%) sin" L am(u + 4pw)

Having put u = 0, from (17.):

1

(18)  x(4pw) =

(/1 + B’sin* am4pw + B" sin*am4pw + - - - + B("7) sin"! am4pw

9.

Having put sinamu = x, since:

xcosamaAam £+/(1 — xx)(1 — k%xx) sinama

sinam(u +4a) =

7

1—k2sin?ama - xx

20



we see that the expression

1+ B’sin?am(u 4 4pw) + B” sin*am (u 4 4pw) + - +B("7) sin™ Yam(u 4 4pw)
1+ B’sin”am4pw + B” sin*am4pw + - - - + B(T]) sin" ! am 4pw

takes on the form:

V(p) £ /(1 —xx)(1 - Kxx)W®)
(1 — k2sin? am 4pw - xx)"—1

where V(P), W(P) denote polynomial functions of x. Hence, if one additionally
puts:

n—1

V =1+B'sinfamu + B" sin*famu + - - - + B("T") sin” Tamu,

from (17.), (18.):

(19) x(u+ 4pw) ] V(1 —k*sin®am4pw - xx)"!

' x(4pw)x(u) V) + /(1T —xx)(1 — Rxx) W)
(20.) x(u—4pw) | V(1—k®sin?am4pw - xx)""!

T x@pw)x) v — /(1T —xx)(1 — Rxx) W)

Having multiplied them by each other, since from (14.):

x(u +4pw)x(u — 4pw)

=1 —Kk*sinZam4pw - XX,
X2 (4pw) 2 (u) P

we obtain:

VV(1—k?sin? am4pw - xx)?" 2

_ 2 32 . n =
[1— k" sin” 4pw - xx] VOVH — (1 — xx)(1 — Rxx) WOW®)

or:

vPVFE — (1 - xx)(1 - Rxx) WPIW®P) = vV(1 — K2 sin® am 4pew - xx)" 2.

The function V contains the factor 1 — k?sin? am 4pcw - xx so that, having put

V =V,(1—k*sin®am4pw - xx),
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vy is a polynomial function: Having substituted this, we find:

21)  vPVP (1 —xx)(1-xx)WEIWP) = V,1,(1 - k? sin® am 4pw - xx)".

Hence from (19.), (20.) it easily follows:

(22) x(u+4pw) VP — /(1T —xx)(1 - Kxx)WP)
7 x(pw)x(u) Vi '
(23) x(u—4pw) VP + /(1= xx)(1 - Kxx)WP)
T x(4pw)x(u) Vo '
Additionally, V() will be a function of x of even order 2n —4,
w) - — - — —— ofodd order 2n —35,
Vy - — - — —— ofevenorder n-—3.
10.

For the sake of brevity, let us put:

O(u) = 14 B'sinfamu + B sin*amu + - - - + B("Z") sin"~
from (17.):

x(utdpw) | Pu)

(24 x(u) N\ D(u+ 4pw);

after logarithmic differentiation it results:

(25) X(utdpw) x'(w)  19(w) 10(u+4pw)
' x(u+4dpw) x(u) ndu) ndu+4dpw)’

if one puts

d :
X = gy = S

Further, since x(u) = e™*Q(u):
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dQ(u)

if O (u) = T Having put u = 0, from (25.) you will find:

X' (4pw) 19 (4pw)
x(dpw)  n P(4pw)’

or, for the sake of brevity having put am4pw = a,:

(26.)  E(4pw) + 8rpw = —im

1 cosapAa,[2B'sina, +4B"sin*a, + -+ -+ (n — 1)3("%1) sin" 2 ay)]

n 1+ B'sin2a, + B"sin*a, + - - + B("2 ) sin" 1 a,
This formula teaches, how the elliptic integrals of the second kind can be
exhibited in the case in which the argument is a certain part of 4(mK + m'iK").

From formula (15.) we obtain:

4 CORNR SN Clnl) R =R UG R S B { Gl
I1(u,a) = ) +210gx(u+a) [E(a) +2 ]+210gx(u+a)'
whence, recalling (24.):
_ 1 jog X2 = 4P)
(27.)  TI(4pw,a) = 4pw|E(a) + 2ra] + ; log x(4pw))
= 4pw|E(a) + 2ra] + % log m
(28.)  TI(u,4pw) = ulE(4pw) + 2rpw] + } log m
U P’ (4pw) 1 P(u+4pw)

I d(4pw) ton log D (u—4pw)’

or:

(29.) [1(4pw,a) = 4pw[E(a) + 2ra]

n—1

1 1+ B'sin®am(a + 4pw) + B” sin* am(a + 4pw) + - - - + B("7") gin"! am(a + 4pw)

+5—log

n—1

2n 71 4 B'sinam(a — 4pw) + B sin*am(a — 4pw) + - - - + B("7") sin"1 am(a — 4pa)),
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(30.) IT(u,4pw)

u cosayA,[2B sina, +4B"sin*a, + - -+ + (n — 1)3(%1) sin" 2 «]

n 1+ B'sina, + B"sin*a, + - - - + BU'7) sin® 1 o

1 1+ B'sin®am(a + 4pw) + B” sin* am(a + 4pw) + - - - + B(

) sin"! am(a + 4pw)

n—1
2
20 B e . C

1+ B’sin”am(a — 4pw) 4+ B” sin* am(a — 4pw) + - - - + B\ 2

These formulas tell us, how the elliptic integrals of the third kind can be
exhibited in the cases in which the argument of either the amplitude or the
parameter (see Fund. § 49) is a certain part of 4(mK + m'iK").

11.

In the fundamental formula (24.):

x(utdpw) | Pu)

) sin" 1 am(a — 4pw)

xw) | O(u+4pw)
. n 1 + B/ SinZ amu + B/I Sin4 amu +---+ B(Lgl) Sinnil amiu
1+ B’sin? am(u +4pw) + B sin? am(u + 4pw) + - + B(%) sin™1 am (1 + 4pw)

the one side of the equation contains the function (i), which has one period,
but the other side consists of the function sin am u, which, except for this one
period, enjoys another one and is hence double-periodic. Therefore, while you
apply the period to the other side, the expression

X(u+4pw)
x(u)
will certainly be changed, but cannot undergo another change than the one

resulting from the ambiguity of the n-th root. Now let us prove this very deep
theorem that the expression

X(u+4pw)

x(u)
which has one period with the elliptic functions in common, while you apply
another period, which those enjoy, does not undergo another change than
that it is multiplied by the root of the equation x" = 1, from the nature of the

4
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function x(u).
Let us put
mK+MiK =Q,  uK+ ik =@,
further let:
aK +a'iK' = pQ+ P'Q,
whence, if p, p/, m, m’, u, u' are real quantities:
a=pm+Pyu  a=pM+py

and hence:

wa— pa ,  ma' —m'a
p— =

T = P =
Let m, m’, u, y’ be arbitrary positive or negative numbers of such a kind that
my' —m'u =1,
it will be:
p=wa—ud, p' =ma —ma,

whence it is plain, whatever integer numbers a, a’ are, that also p, p’ are also
integers and vice versa. Further:

K=4y'Q-m'Q, iK' =mQ" — uQ.

Whatever positive or negative integer numbers 4, a’ are, it will be

sinam(u + 4aK + 44'iK’) = sinamu,

whence, whatever positive or negative integer numbers p, p’ are:

sinam(u + 4pQ + 4p’'Q’) = sinamu.

It is possible to compose all innumerable periods, which the elliptic functions
enjoy, from the two contained in the equations:

sinam(u + 4K) = sinamu, sinam(u + 4iK’) = sinam u.
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From the preceding it is plain that one can substitute these for those:

sinam(u +4Q) = sinamu, sinam(u + 4Q’) = sinamu,

if:

Q=mK+m'iK, Q =uK+ u'iK,

while m, m’, u, 4’ denote positive or negative integers of such a kind that
mu' —m'y = 1. Hence we see that the periods, which the elliptic functions
enjoy, can be composed from two in innumerable ways. But we will call
two periods of such a kind, from which all remaining one can be composed,

CONJUGATED periods.
. mK + m'iK’ .
Having, as above, put w = 9 = ——— , let us now ask, what is pro-

n n
pounded, what becomes out of the expression

xlutdpw) _ X (14 %)
xw) o x(w)
having changed u into u +4Q’ or more generally into u + 4P’'Q’, while p’
denotes an arbitrary positive or negative number. We saw, having put:

7

. m'ir _E_m’in_i
T iK(mK +m'iK’) 2K 4KQ 2K’

it will be:
e QO (1 + 4Q) = " O(u);
hence, having put u, ' instead of m, m’, and hence Q’ instead of Q, and

i win _£
T 4KQ T 2K’

we find:

er/(u+4Q’)ZQ(u +4Q/) — er/uuQ(u)‘

4
Having changed u into u + pT = u +4pw, it results:

€r,(u+$+4Q,)ZQ <u + ? + 4Q/> _ er’(uﬁ-%)zg(u + %)/
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whence:

00 Q(u—k%%—ﬁlQ’) Q(%)
T ou+4Q) T o)

But from the formula x(u) = e™*Q(u) it follows:

e

4 4
X (u + L;Q + 4Q/> 40 (21[+9Q,+4PQ> Q (u + L;Q + 4Q/>
= e n n

x(u+4Q") - Ou+4Q)

4 r QO (u + @
r~'f—1Q(2u+8Q’+$>—r/~732anQ n
= e e,
Q(u)
whence:
4pQ / 4pQ
x(n+ 28 +40) _ oo ) X (u+22) |
x(u+4Q") x(u)
But

,_omlin plin in m'Q'—p'Q
T 4KQ 4KQ K 400

and hence, since m'Q’ — y'Q = —K:

32pQQ’
n

r—r

(r—1) = _81p7r’

n

whence we obtain the fundamental formula:

X(u—f—%—i—élQ’)

31. —e )
S (R Te] X
or this more general one:
a2 +apQ) . (u+2)
32. —e =~/
S (R TL) X

Therefore, we see, what was to be demonstrated, THAT THE EXPRESSION

(4 52) o+ apo)
x(u) x(u)

4
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WHICH HAS ONE PERIOD WITH THE ELLIPTIC FUNCTION IN COMMON OR REMAINS
UNCHANGED, HAVING CHANGED # INTO U + 4(), WHILE YOU APPLY THE CON-
JUGATED PERIOD TO IT OR # IS CHANGED INTO u + 4(Q’, 1S MULTIPLIED BY THE
n—TH ROOT OF 1.

Yes, formula (32.) even suggests an analytical expression of the n—th root of
1 you have to find; this is a beautiful result.

These considerations now pave the way to greater results. For, on these as a
foundation in the following we will discuss the inverse transformations and
the section of elliptic functions, an intricate and elegant question.

Written in Konigsberg, in the month of April 1829.
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2 SECOND TREATISE ON ELLIPTIC FUNCTIONS

2.1 ON THE SUMS OF SERIES OF ELLIPTIC FUNCTIONS, WHOSE
ARGUMENTS CONSTITUTE AN ARITHMETIC SERIES.

In the following we propound certain elementary formulas for the sums of
elliptic functions, whose arguments constitute an arithmetic series. They
both can be useful in other questions and yield general functions for the
transformation of elliptic functions very easily.

I start from the known formula for the addition of elliptic integrals of the
second kind:

(1.) E(a) + E(u) — E(a+u) = k* sinam asinam u sinam(u + a),

in which from the notation introduced in the first treatise on elliptic functions:
u
E(u) = /A2 am udu.
0

In formula (1.) let us write pa instead of a, whence:

E(pa) + E(u) — E(u 4 pa) = k* sinam pa sin am u sinam(u + pa);

and having successively put u, u +a, u+2a, - - -, u + (n — 1)a instead of u, let
us do the summation. Generally denoting the sum by ¥.") F(u):

(n)
Y F(u)=F(u)+F(u+a)+F(u+2a)+ - +Fu+(n—1a),
we have:
(n) (n)
nE(pa) +Y_ E(u) — EME(u + pa) = k? sinam pa Y sinam(u + pa).

The same way, from the formula:

E(na) + E(u) — E(u 4 na) = k* sinam na sinam u sinam(u + na),
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having successively put u, u+a, u+2a, ---, u+ (p — 1)a instead of u and
having done the substitution, you obtain:

(p) (n)
pE(na)+Y E(u)—Y_ (p)E(u+na) = k*sinamna y_sinamu sinam(u + na).
Now I observe that:

(n+p) (n) (p) (p) (n)
Y E(u)=)Y E(u)+) E(u+na)=)Y E(u)+) E(u+ pa)

and hence:

(n) (n) (p) (r)
Y E(u)—Y E(u+pa)=Y E(u)—Y E(u-+na).

Hence from the mentioned two formulas

k2 sinam pa Y sinam u sin am (1 + pa)
(2.) { = nE(pa) — pE(na).

—k2sinam na Y(P) sin am u sin am (u + na)

We have the memorable case in which sinamna but not sinam pa do not
vanish at the time, in which case (2.):

) nE(pa) —
) ) B pa) — pE(na)
(3.) ) _sinam usinam(u + pa) = Ksnampa

Now I observe that in the elements one proves the formulas:

cosama = cosam u cosam(u +a) + Aamasinamusinam(u + a),

Aama= Aamu Aam(u+a)+ k?>cosamasinamusinam(u + a),
whence from (3.) we also obtain:

Aam pa

(n) - __o9rr
(4.) YV cosamu cosam(u + pa) = ncosam pa Esinam pa

[nE(pa) — pE(na)],

(5.) YW  Aamu Aam(u+a)= nAampa— cotam pa[nE(pa) — pE(na)].
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Therefore, we see, if sinam na vanishes, but sinam pa does not vanish at the
same time, that the expressions

Z(n) sinamu sinam(u + pﬂ),
Z(”) cosamu cosam(u + pa),

Y™ Aamu A(u+ pa)

do not depend on the argument u. Furthermore, having, as in the Fundamenta
nova, put

mK 4+ m'iK’

7

n

while m, m’ denote arbitrary positive or negative numbers, which do not have
the same factor of 7 in common, so that sinam na and sinam pa do not vanish
at the same time, it has to be 2 = 2uw, while u denotes an arbitrary integer
number, as long as up is not divisible by 7.

Not using the sums of the elliptic functions you obtain the formulas this way.
For, having put:

amu = &, amov = B, am(u +v) =0, am(u —v) =0,

from the formulas (24.) — (29.) in the Fundam. § 18 it follows:

2 A A
cosc AY 4+ cos® Ao = cosﬁ.ﬁzcos.zxzzx’
1 —k?sin® Bsin”
Ao sint + A9 sino = 2cos[‘%szmzx.Ao; ,
1 — k?sin” Bsin” «

2ABsina cos «

sino cos?® + sin® coso =

1 — k2 sin? ﬁsinz a

But at the same time we gave the formulas (4.) — (6.) in § 18:
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2sin ff cos aAx
1 — k2sin® Bsin®a’
2sin BAB sinaAwn
1 — k2sin® Bsin®a’
2k? sin B cos B sina cos a
1 — k?sin® Bsin® «

having combined which with the first it results:

sinc — sind =

cost — coso =

A% — Ao =

(6.) cosoc AU +cost® Ao = tAﬁ (sino —sin9),

an f8
1
7. i inc=-——— -
(7.) Ao sind + A¢ sinc A,Btanﬁ(COSﬂ coso),
(8.) sino cos® + sind coso = Ai'g(Aﬁ—Aa)
' ~ k%sinBcos '

Having put u + 5 instead u and v = 3:

B = amg, c=am(u+a), O®=amu,
whence (6.) — (8.) are represented this way:

Aam7j .
m[sm am(u + a) — sinamu],
2

1
Aam % tanam

cosamu Aam(u+a)+ cosam(u+a)Aamu =

Aamu sinam(u+a) + Aam(u+a)sinamu = —[cosam u — cosam(u + a)],
2

a
Aamz

sinam u cosam(u +a) + sinam(u +a) cosamu = [Aamu — Aam(u +a)].

k2 sinam 5 cos am §
In these formulas write pa instead of 4, and having successively put u, u + 4,

-+, U+ (n—1)a instead of u, do the summation; further, in these same
formulas write na instead of a, and having successively put u, u +a, ---,
u+ (p—1)a, do the summation again. Having compared both sums to each
other and having additionally observed that:

(n) (n) () (p)
Y F(u)— Y F(u+ pa) = Y F(u) = Y. F(u + na),
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you obtain:

tanam 2
9.) Aipaz (") [cos am uA am(u + pa) + cosam(u + pa)A am u]
am
tanam 2
= Aam® (P)[cos am uA am(u + na) 4 cosam(u + na)Aamu),
(10.) tan %QA am % Y [Aamusinam(u 4 pa) + Aam(u + pa) sinam u]

= tanam %A am 7} Y (") [Aam usinam(u 4 na) + Aam(u + na) sinam u],
pa pa

sinam 5 cosam 5 , ,
(11.) Y [sinam 1 cos am(u + pa) + sinam (1 + pa) cos am u]

Aam & 2

sinam %! cosam % Vo )
Y. \P[sinam u cosam /u + na) + sinam(u + na) cos am u].

Aam 2

In the special case in which sinam % and sinam pa do not vanish at the same
time, from (9.) — (11.) these memorable formulas follow:

(12.) Y™lcosamu Aam(u+ pa) + cosam(u+ pa) Aamu] =0,
(13.) Y[ Aamu sinam(u + pa) + Aam(u+ pa) sinamu] = 0,
(14.) Y (" [sinam u cosam(u + pa) + sinam(u + pa) cosamu] = 0.

Now we constructed general formulas for the transformation of elliptic func-
tions by means of the formulas (3.) — (5.), (12.) — (14.).

2.2 NEW PROOF OF THE FUNDAMENTAL FORMULAS FOR THE
TRANSFORMATION OF ELLIPTIC FUNCTIONS

Let us consider the expressions:
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R = sinamu + sinam(u 4+ 4w) + sinam(u +8w) + - -+ + sinam(u +4(n — 1)w),
S = cosamu + cosam(u + 4w) + cosam(u + 8w) + - -+ + cosam(u +4(n —1)w),

T= Aamu+ Aam(u+4w)+ Aam(u+8w)+--- + Aam(u+4(n—1)w),

. . . 17 ! .
in which 7 is an odd number, w = %, as above and in the Fundamenta

nova, so that, having put 4w = 4, if p < n or certainly p is not divisible by n,
sinam 5* = 0 but not sin pa = 0 at the same time.
Here, for the sake of brevity, by }_ F(u) we denote the sum:

Y F(u) = F(u) + F(u+4w) + -+ F(u+4(n — 1w),

the expressions R, S, T can be represented in shorter form this way:

R:Zsinamu, S:Zcosamu, T:ZAamu.

Let us ask for the squares and the products of two of the expressions R, S, T.
As it is plain having done the multiplication, we have:

RR = Y sin?amu + ¥ sinamu sinam(u + 4w)

+ Y sinamu sinam(u + 8w)

+

+ Y sinamu sinam(u +4(n — 1)w),
SS =Y cos’amu + Y cosamu cosam(u + 4w)

+ Y cosamu cosam(u + 8w)

+

+ Y cosamu cosam(u +4(n — 1)w),
TT =Y A’amu + Y Aamu Aam(u+ 4w)

+ Y Aamu Aam(u +8w)

+

+Y Aamu Aam(u+4(n—1)w).

Now from the results we propounded above it is plain that expressions of this
kind:
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Y. sinamu sinam(u + 4pw),
Y. cosamu cosam(u + 4pw),

Y Aamu A(u+4pw),

in which as in the preceding p < n, are equal to constants or do not depend
on the argument u. Hence one can put:

RR = Ysinamu — 2p,
(15.) SS = Y.cos?amu — 20,
TT =Y. A’amu — 21,

while p, o, T denote constants, whose values must be taken from special values
of u. For this aim, note the following elementary formulas:

sinam4(n —n')w = — sinam 4n'w,
cosam(K +4(n —n')w) = = cosam (K + 4n'w),
Aam(K + iK' +4(n—n')w) = — Aam (K+ iK' +4n'w),

further, the formulas

sinam0 = cosam K = Aam(K +iK’') =0,
from which it is clear, having respectively put u = 0, u = K, u = K+ iK/,
that the expressions R, S, T and hence also RR, SS, TT vanish. Hence, since
furthermore:
Aam(K + iK' +u) = ik’ tanamu,
from (15.), having respectively put u =0, u = K, u = K+ iK' put:

p= sinffam4w + sinam8w + --- + sinfam2(n — 1)w,
o= cos?coam4w + cos’coam 8w + -+ + cos®>coam2(n — 1)w,
T = KkKK[tan?am4w + tan’am8w + -+ + tan’am2(n — 1)w).

The quantities p, o, T are the same as those we exhibited in the first treatise
on elliptic functions denoted by these letters.
From the formulas (15.) it follows:
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RR+SS =n— 20—20,
K’RR + TT = n — 2k?p + 27,

whence one can put:

R =/n—20—20-siny,

S=/n—2p—20-cosy,

2(y _ _
T = n—2k2p+2r-\/1—kn(n 20 =29) Gy,

—2k%p + 21
or, having put:

K2(n—20 —20)
n—2k%p + 2t

1
=AM —2k%0 42T = ——
" 0= N

we find:

A _ A 1 . 9
r—kMsmlp, S—kooqu, T—M 1 — AAsin“ .

Let us now ask for the products of two of the expressions R, S, T. After the
multiplication one finds:

ST = Y cosamuAamu
+3 Y[cosam uA am(u + 4w) 4 cosam(u + 4w)A am u]

+3 Y[cosam uA am(u + 8w) + cosam(u + 8w)A am u]

+3 Y[cosamuAam(u +4(n — 1)w) 4+ cosam(u + 4(n — 1)w)Aamu].
We added the factor %, since in the sums, to which it was added, each term
occurs twice. Now from (12.), having put 4 = 4w, if, as in the preceding,

p < n, we have:

) [cosam uA am(u + 4pw) + cosam(u + 4pw)Aamu] = 0,

whence simply:
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ST = ZcosamuA am u.

The same way by means of formulas (13.), (14.) one finds:

TR =) Aamu sinamu,

RS = Y} sinam u cosam u.

But from the formulas:

R:Zsinamu, S:Zcosamu, T:ZAamu,

after a differentiation it follows:

dR
= Y cosamu Aamu = ST,
ds
= Y, Aamu sinamu = TR,
T
Zu: — k*Y_ sinamu cosamu = — k*ST

whence, since from the preceding:

A A 1 5
R—msmgb, S—mcosqz, T—ﬁ\/l AAsin” 1,

we find:

tj;p:]\l/ly/l—)\/\sinng or dMu: G ,
" \/1— AAsin® ¢
whence, since 1 and u vanish at the same time:

= am (%,A).

Therefore, we obtained the values of R, S, T

R = ﬁ sinam (%,A) ,

S L cos am (%,/\) ,

T kM
T = % Aam (%A)
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or, what is the same:

A u . . .
o Sinam <M'/\) = sinamu + sinam(# +4w) + - -+ + sinam(u +4(n — 1)w),

A
oS am (%,/\) = cosamu + cosam(u +4w) + - -+ + cosam(u +4(n — 1)w),
1 u

— Aam <M'

i /\)z Aamu + Aam(u+4w)+ -+ + Aam(u+4(n—1)w).

These are the fundamental formulas for the transformation of elliptic func-
tions.
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